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Abstract—This paper studies a class of hybrid susceptible-
infective-susceptible (SIS) epidemic models in the constant
total population in the form of switched systems with mul-
tiple equilibria. First, this paper formulated a switching SIS
epidemic model having three different equilibria. Then, several
sufficient conditions of Lyapunov stability are derived for
switching the SIS epidemic model with multiple equilibria in
this paper. Finally, two numerical examples are performed
to show the effectiveness and practicality of the Lyapunov
stability results obtained in this paper for such kinds of
switching nonlinear systems with multiple equilibria.

Index Terms—multiple equlibria, switched system, SIS
model, Lyapunov stability

I. Introduction

Infectious diseases not only jeopardize human health,
but also affect economic development and social stability,
so it is very important to prevent and control the spread
of infectious diseases [1]. The basic purpose of establishing
disease dynamics is to study the transmission dynamics of
infectious diseases, and the quantitative study of disease
transmission mechanisms provides a basis for the preven-
tion and control of infectious diseases [2]. There is an infec-
tious disease that divides all individuals into two groups:
the susceptible population and the diseased population,
and the susceptible population is exposed to diseased
individuals carrying the infectious disease. The susceptible
population has a certain probability of becoming sick, and
they do not gain immunity after receiving treatment and
recovering from the disease, becoming susceptible again,
and there is no incubation period in the infection process.

This classical model of infectious diseases is known as
the SIS disease model, e.g., bacterial diseases, encephali-
tis, and gonorrhea. The rapid development of infectious
disease modeling was prompted by Kermack and McK-
endrick’s construction of a SIR [3] model to study the
spread of disease in 1927, followed by the proposal of the
SIS [4] model in 1932 and the introduction of threshold
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theory in infectious disease dynamics. Unusually, litera-
ture [5] studied population fractions for more intuitive
critical conditions and later added a time lag correspond-
ing to the stage of infectious disease to study the SIS model
of the impact of birth and death rates on dynamics in the
total population [6] and later scholars have also studied
fractional-order SIS epidemic models [7]- [9]; literature [10]
extended the classical SIS epidemiological model for the
first time from a deterministic framework to a stochastic
framework and formulated it as a Stochastic Differential
Equation (SDE), and so on. Literatures [11]- [14] extended
the SIS model extended to networks to study dynamic
properties.

Switching systems are hybrid dynamical systems con-
sisting of a series of continuous-time subsystems and
rules that control the switching between them. The first
condition for studying systems is to ensure that they
are stable, and in real life problems involving switching
systems are often nonlinear. To analyze the stability of
switching systems some useful methods such as the com-
mon Lyapunov function method (CLF) [15], the multiple
Lyapunov function methods (MLFs) [16], the multiple
storage function methods (MSFs) [17], the average dwell-
time method [18] and the maximum energy function
method [19] and so on.

Parameters in the SIS model change in different periods,
and a single system can no longer accurately represent the
transmission process of infectious diseases. This kind of
mathematical model whose parameters will vary is very
suitable to be expressed in the form of a switching system
and provide a more effective approach to facilitate the
control of infectious diseases.

In this paper, we construct a multi-equilibrium switch-
ing SIS epidemic system that incorporates the dynamics
of the total population. We investigate the dynamic
properties of the switching SIS epidemic model and
identify the Lyapunov stability conditions for the multi-
equilibrium switching SIS system, which guarantee the
eventual eradication of the disease.

The rest of this article is organized as follows. Section II



formulates a switching SIS epidemic model with multiple
equilibria and Section III studies the stability analysis of
the system and gives sufficient conditions for Lyapunov
stability. Section IV presents the simulation results and
analysis. Finally, Section V gives the conclusion.

II. Model Formulation and Preliminaries
This subsection is to formulate a kind of SIS epidemic

mathematical model in the form of switching nonlinear
systems with multiple equilibrium points.{

dN(t)
dt = (b− δ)N(t), t ≥ t0,

N(t0) = N0,
(1)

where the initial state N0 is a positive constant, and t0
is the initial time. Two notations of b and δ are both
positive constants that denote the rate of birth and the
rate of natural death/mortality respectively. When the
birth rate b is equal to the natural mortality rate, the
total population is constant.

Then the SIS epidemic mathematical model can be
expressed as follows

dS(t)
dt = bN − βσ(t)

S(t)I(t)
N + gσ(t)I(t)− δS(t),

dI(t)
dt = βσ(t)

S(t)I(t)
N − gσ(t)I(t)− δI(t),

S(t0) = S0 > 0, I(t0) = I0 > 0,

(2)

assume that there is no incubation period and that all indi-
viduals are born healthy. The constant total population N ,
which is denoted by the total population, is divided into
two compartments: a susceptible compartment, labelled
S(t), in which all the individuals are susceptible if they
contact with a disease; an infected compartment, labelled
I(t), in which all the individuals are infected by the suscep-
tible and the infected, the above satisfy N = S(t) + I(t).
The two notations β and g are all positive constants that
denote respectively the contact rate and the recovery rate
used in the system (2).

Letting s(t) = S(t)
N > 0, i(t) = I(t)

N > 0, the system (2)
can be converted into the following ODE equation:

ds(t)
dt = b− βσ(t)s(t)i(t) + gσ(t)i(t)− δs(t),

di(t)
dt = βσ(t)s(t)i(t)− gσ(t)i(t)− δi(t),

s(t0) = s0 > 0, i(t0) = i0 > 0,

(3)

where the initial conditions s0 = S0

N > 0, i0 = I0
N > 0 are

assumed to satisfy as follows

D =
{
(s, i) ∈ R2

+|s+ i = 1
}
. (4)

System (3) has a common disease-free equilibrium
Q0 = (1, 0) and two endemic equilibria, given by
Qσ(t) = (

δ+gσ(t)

βσ(t)
, 1 − δ+gσ(t)

βσ(t)
). It is possible to reduce

system (3) to one dimension ordinary differential equation
(ODE) equation by (4):{

di(t)
dt = −βσ(t)i

2 + (βσ(t) − gσ(t) − δ)i
i(tk) = ik, t ∈ [tk, tk+1), k ∈ N,

(5)

Here i(t) := i(t; t0, i0, σ) ∈ D is the state of the system,
and D is the system’s domain contained in R2

+ in (4).
Throughout this paper, the switching path σ(t) is one

of the following two periodic switching path (PSP):

σ1(t) =

{
1, t ∈ [t2k, t2k+1), t2k+1 − t2k ≡ T1 > 0,
2, t ∈ [t2k+1, t2k+2), t2k+2 − t2k+1 ≡ T2 > 0,

(6)
and

σ2(t) =

{
2, t ∈ [t2k, t2k+1), t2k+1 − t2k ≡ T2 > 0,
1, t ∈ [t2k+1, t2k+2), t2k+2 − t2k+1 ≡ T1 > 0,

(7)
where k ∈ N and the switching phenomena to be

occurring from the epidemic disease over time can be
described by a piecewise right-continuous constant map:
σ(t) : [t0,∞) → {1, 2}, every subsystem always works
when time tends to infinity, and σ(t) = n (n ∈ {1, 2)}
indicate that the n-th system works. Such kind of switch-
ing path σ(t) describes completely the periodic switching
phenomena assumed in (3). Then, the switching path
considered in this paper is assumed to be satisfied the
followings: (1) All the switching states cannot jump at
the related switching times. (2) There dose not exist Zeno
phenomenon, i.e., there is not infinite switching times over
any finite time intervals.

III. Stability Analysis

This subsection is to study the Lyapunov global asymp-
totic stability of switching system (3) with respect to
disease-free equilibrium.

Theorem 1: System (3) is globally asymptotically stable
with respect to the only common disease-free equilibrium
point Q0 = (1, 0) under arbitrary PSP σ(t) if holds

β1 − g1 = β2 − g2 = δ. (8)

Proof: System (3) under the PSPs σ1(t) in (6) and σ2(t) in
(7) can be transferred into two switched nonlinear systems
with multiple equilibrium points (SNSME) as follows.

(i) SNSME 1:{
di(t)
dt = −β1i

2 + u1i, t ∈ [t2k, t2k+1),
i (t2k) = i2k, T1 = t2k+1 − t2k, k ∈ N,

(9a)

{
di(t)
dt = −β2i

2 + u2i, t ∈ [t2k+1, t2k+2),
i (t2k+1) = i2k+1, T2 = t2k+2 − t2k+1, k ∈ N,

(9b)

and
(ii) SNSME 2:{

di(t)
dt = −β2i

2 + u2i, t ∈ [t2k, t2k+1),
i (t2k) = i2k, T2 = t2k+1 − t2k, k ∈ N,

(10a)

{
di(t)
dt = −β1i

2 + u1i, t ∈ [t2k+1, t2k+2),
i (t2k+1) = i2k+1, T1 = t2k+2 − t2k+1, k ∈ N;

(10b)

where u1 = β1 − g1 − δ and u2 = β2 − g2 − δ.



From (8), (9a) and (9b), we obtain that when t ∈
[t2k, t2k+1), the solution of system (9) can be expressed
as follow

i(t, β1, β2, T1, T2) :=
i0

i0[β1(t− t2k) + k(β1T1 + β2T2)] + 1
,

(11)
which satisfies

i(t2k) ≥ i(t) ≥ i(t2k+1), t ∈ [t2k, t2k+1), k ∈ N; (12)

and when t ∈ [t2k+1, t2k+2), the solution of system (9) can
be expressed as follow

i(t, β1, β2, T1, T2) :=
i0

i0[β2(t− t2k+1) + (k + 1)β1T1 + kβ2T2] + 1
,

(13)
which satisfies

i(t2k+1) ≥ i(t) ≥ i(t2k+2), t ∈ [t2k, t2k+1), k ∈ N, (14)

where the switching states are as follows

i(t2k+1) =
i0

i0[(k + 1)β1T1 + kβ2T2)] + 1
, k ∈ N, (15)

and

i(t2k) =
i0

i0k(β1T1 + β2T2) + 1
, k ∈ N. (16)

It follows from (15) and (16) that the limitations of two
switching state sequences {i(t2k+1)}+∞

k=0 and {z(t2k+2)}+∞
k=0

relation to (15) and (16) are both divergent, i.e.,

i(t2k+1) → 0, as k → +∞, (17)

and
i(t2k) → 0, as k → +∞. (18)

From (12), (14), (17), (18) one obtains that

i(t) → 0, as k → +∞. (19)

It means that system (3) is globally asymptotically
stable with respect to the equilibrium point Q0 = (1, 0)
under arbitrary PSP σ1(t) in (6). As for the case that
system (3) under arbitrary PSP σ2(t) in (7) it is the same
to show the conclusion also holds. The proof of Theorem
(1) is thus completed.

Next, we consider the case that the first subsystem
only has disease-free equilibrium Q0, which is the stable
disease-free equilibrium point of the first subsystem and
the unstable disease-free equilibrium point of the second
subsystem; Q2 is the stable epidemic equilibrium point of
the second subsystem.

Theorem 2: Consider system (3) is globally asymp-
totically stable with respect to the common disease-free
equilibrium point Q0 = (1, 0) under arbitrary PSP σ(t)
if the dwell times T1 and T2 of the first and the second
subsystems satisfy

R(T1, T2) :==
β1T1 + β2T2

g1T1 + g2T2 + δ(T1 + T2)
< 1. (20)

Proof: System (3) under the PSPs σ1(t) in (6) and σ2(t) in
(7) can be transferred into two switched nonlinear systems
with multiple equilibrium points (SNSME) as follows.

(i) SNSME 1:{
di(t)
dt = −β2i

2 + u2i, t ∈ [t2k, t2k+1),
i (t2k) = i2k, T2 = t2k+1 − t2k, k ∈ N,

(21a)

{
di(t)
dt = −β1i

2 + u1i, t ∈ [t2k+1, t2k+2),
i (t2k+1) = i2k+1, T1 = t2k+2 − t2k+1, k ∈ N,

(21b)

and
(ii) SNSME 2:{

di(t)
dt = −β1i

2 + u1i, t ∈ [t2k, t2k+1),
i (t2k) = i2k, T1 = t2k+1 − t2k, k ∈ N,

(22a)

{
di(t)
dt = −β2i

2 + u2i, t ∈ [t2k+1, t2k+2),
i (t2k+1) = i2k+1, T2 = t2k+2 − t2k+1, k ∈ N;

(22b)

where u1 = β1 − g1 − δ and u2 = β2 − g2 − δ.
For SNSME 1, from (21a) and (21b) can obtain the

simplified solutions of system (21) are respectively as
follows.

When t ∈ [t2k, t2k+1),

i(t, u1, u2, T1, T2) :=
Ci0e

u2(t−t2k)

i0[CD(t) +AF +BE] + 1
, (23)

and when t ∈ [t2k+1, t2k+2),

i(t, u1, u2, T1, T2) :=
Ci0e

u1(t−t2k+1)+u2T2

i0[CG(t)eu2T2 +AF +BH] + 1
,

(24)
which are with the switching states of system (3) at
the switching times t2k and t2k+1 are respectively the
following:

i2k+1 =
Ci0e

u2T2

i0(AF +BH) + 1
, (25)

and
i2k =

Ci0
i0(AF +BE) + 1

, (26)

where A = eu1T1−1
i∗1

, B = eu2T2−1
i∗2

, C = ek(u1T1+u2T2),

D(t) = eu2(t−t2k)−1
i∗2

, E =
k−1∑
n=0

en(u1T1+u2T2), F =

k∑
n=0

enu2T2+(n−1)u1T1 − e−u1T1 , G(t) = eu1(t−t2k+1)−1
i∗1

, H =

k∑
n=0

en(u1T1+u2T2).
It can be obtain from (20) that (20) implies

u1T1 + u2T2 < 0. (27)

Since (27) holds , the sequences {e(k+1)u2T2+ku1T1}+∞
k=0

and {e(k+1)(u2T2+u1T1)}+∞
k=0 converges to zero as k goes

to infinity, i.e.,

lim
k→+∞

e(k+1)u2T2+ku1T1 = 0, lim
k→+∞

e(k+1)(u2T2+u1T1) = 0.

(28)



From which one knows that the series
∑+∞

n=0 e
n(u1T1+u2T2)

and
∑+∞

n=0 e
nu2T2+(n−1)u1T1 , two limitations as follows,

lim
k→+∞

+∞∑
n=0

en(u1T1+u2T2) =
1

1− e(u1T1+u2T2)
, (29)

lim
k→+∞

+∞∑
n=0

enu2T2+(n−1)u1T1 =
e−u1T1

1− e(u1T1+u2T2)
. (30)

Then, it follows from (25), (26), (28)-(30) that

lim
k→+∞

i(t) = 0, (31)

which implies that system (3) is globally asymptotically
stable with respect to the disease-free equilibrium point
Q0 = (1, 0) under arbitrary PSP σ2(t) with the drew times
T1 and T2 satisfying (7).

As for the case that system (3) under arbitrary PSP
σ1(t) in (6) it is the same to show the conclusion also
holds. The proof of Theorem (2) is thus completed.

Remark 1: For each subsystem, there are two equilibria,
and we study the sufficient stability conditions for the
disease-free equilibria that are common to the subsystems
in this switching system aimed at controlling the extinc-
tion of infectious diseases.

IV. Numerical Simulations
In this section, the results of Lyapunov stability ob-

tained in Section (2) are shown by two numerical examples
carried out for system (3). Numerical simulations show
that these novel results given are effective and practical.

Example 1: Consider system (3) under a PSP σ1(t)
expressed in (6). The parameters of the two subsystems
of system (3) are chosen as follows. The two contact
rates: β1 = 1/2 and β2 = 1/4; The two recovery rates:
g1 = 29/30 and g2 = 7/30; And the natural mortality
rate: δ = 1/60 . The above parameters are chosen partly
from [20].

It is easy to obtain from these parameters satisfy (8).
It implies that the two subsystems have a common stable
disease-free equilibrium point Q0 = (1, 0), We choose a
set of subsystems’ dwell times of the PSP σ1(t) as follows.
T1 = 10+ 1×rand, T2 = 30+ 1×rand. As shown in Fig 2,
the epidemic disease will extinct as time goes to infinity.
This shows that Theorem 1 is effective and practical.

Example 2: Consider system (3) under a PSP σ2(t)
expressed in (7). The parameters of the two subsystems
of system (3) are chosen as follows. The two contact
rates: β1 = 1/2 and β2 = 1/12; The two recovery rates:
g1 = 1/10 and g2 = 1/8; And the natural mortality rate:
δ = 1/70 . The above parameters are chosen partly from
[20].

It is easy to obtain from these parameters that
β1

r1 + δ
= 4.375 > 1 and

β2

r2 + δ
= 0.5983 < 1, (32)

it implies that the two subsystems have a common disease-
free equilibrium point Q0 = (1, 0), which is the unstable

Fig. 1: The responses of the PSP σ1(t).

Fig. 2: The states of system (3) under the PSP σ1(t)
starting from initial state (s0, i0) = (0.1, 0.9).

equilibrium point of the first subsystem and the stable
equilibrium point of the second subsystem, and a epidemic
equilibrium point Q1 = (0.7714, 0.2286) which is a stable
epidemic equilibrium point of the first subsystem. We
choose a set of subsystems’ dwell times of the PSP σ2(t)
as follows. T1 = 3+ 1×rand, T2 = 30+ 1×rand. It can be
seen from (20) that

R(T1, T2) :=
β1T1 + β2T2

(g1T1 + g2T2) + δ(T1 + T2)

=
1/2× 3 + 1/12× 30

1/10× 3 + 1/8× 30 + 1/70× (3 + 30)

=0.699 < 1, (33)

which means that (20) of Theorem 2 is satisfied.
As shown in Fig 4, the epidemic disease in such case will

extinct as time goes to infinity. This shows that Theorem
2 is effective and practical.



Fig. 3: The responses of the PSP σ2(t).

Fig. 4: The states of system (3) under the PSP σ2(t)
starting from initial state (s0, i0) = (0.1, 0.9).

V. Conclusion
In this paper, we investigate the behaviors of a class

of switching SIS epidemic systems with multiple equi-
librium points. After formulating the kind of infectious
diseases exhibiting switching phenomena and different
states, several sufficient conditions for the global asymp-
totic stability of Lyapunov on the common disease-free
equilibrium point are respectively proposed by analysing
the dynamic behaviour of the switching SIS epidemic
model. The results obtained in this paper also show that
for such kind of epidemic it is highly effective to implement
the following epidemic disease control measures: quickly
control the source of infection and disrupt the transmission
route to reduce the contact rate between susceptible
and infected people, and strengthen the construction of
medical resources to improve the recovery rate of infected
people. Numerical simulations of two examples are also

shown the above conclusion and the stability results of the
switching SIS epidemic with multiple equilibrium points.
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